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Abstract

We consider the problem of characterizing all obviously strategy-proof (OSP) mech-
anisms for general preference environments. We show that any OSP mechanism is
equivalent to a generalized millipede game in which agents are sequentially offered a
menu of payoffs they may clinch (and thus leave the game), plus possibility the op-
portunity to pass (and remain in the game, hoping for better clinching options in the
future). Our preference setting unifies many canonical mechanism design settings, such
as single-unit auctions, public goods problems, and object allocation, and thus, many of
the known OSP mechanisms are special cases of generalized millipede games. We also
introduce other examples that fit our preference model that are new to the literature.

1 Introduction

In a mechanism design problem, the goal is to implement a social outcome, where the
optimal outcome is a function of the private information of the agents involved. Since the
designer does not know this information, they must construct a mechanism—a sequence of
actions/announcements taken by the agents, either simultaneously or sequentially—with the
final outcome being chosen as a function of the actions taken by all agents. A natural way
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to ensure that this outcome is in line with the designer’s objectives is for the designer to
be confident that they can predict the actions the agents will take for each possible type
they may have. In principle, this can be achieved by designing a strategy-proof (also known
as dominant strategy incentive-compatible) mechanism, which is a mechanism such that
each agent i has a single strategy that, no matter what the other agents do, gives i her
best possible outcome. However, a recent empirical and experimental evidence suggests that
strategyproofness alone may be insufficient if players are unable to recognize that they have
a dominant strategy in a given mechanism (either because they have cognitive limitations,
or the mechanism is too complex).1 Thus, they may not play as the designer predicts.
Predictability of play requires the mechanism to be sufficiently simple.2

In a seminal paper, Li (2017) introduces the notion of an obviously strategy-proof (OSP)
mechanism. He provides a formal characterization of obviously strategy-proof strategies
as those that can be recognized as optimal by cognitively limited agents who are unable
to engage in the contingent reasoning necessary to recognize dominant strategies in some
merely strategyproof mechanisms. He also uses OSP to characterize simple mechanisms for
certain binary allocation problems, which include canonical environments such as single-unit
auctions. Pycia and Troyan (2023) characterize the full class of OSP mechanisms for a broad
class of no-transfer environments3

In this paper, we consider a wider array of economic environments, and seek a charac-
terization of OSP mechanisms that applies across a broad range of economic settings. The
starting point of our model is a set of outcomes, X , which can be very general. Each agent
i has a preference relation over X that lies in some domain, Pi. The designer does not
know any agent’s exact preference, but, depending on the context of the problem, may have
some knowledge about how agents view different outcomes. For instance, in a setting with
transfers, all else equal, agents prefer an outcome in which they get more money to less; in
school choice setting in which students are to be allocated to schools, students care about
their own school, but are indifferent to how the other schools are distributed amongst the
remaining students. To capture these examples, as well as others, we assume that associated
with each Pi is a binary relation on X , denoted ⊵i, that we call a trump relation.

1See, e.g., Kagel, Harstad, and Levin (1987), Hassidim, Romm, and Shorrer (2016), Li (2017), Rees-Jones
(2017), Artemov, Che, and He (2017), Shorrer and Sóvágó (2018), and Rees-Jones (2018).

2Simplicity has also other benefits including economizing on participation costs (Vickrey, 1961), attract-
ing participants (Spenner and Freeman, 2012), leveling the playing field (Pathak and Sönmez, 2008), and
economizing on what the designer needs to know Wilson (1987).

3This is the paper on which the current contribution most closely builds. In his seminal work, Li (2017)
also provides some results on OSP mechanisms for another canonical mechanism design setting, object assign-
ment problems without transfers. OSP properties of other specific mechanism classes or specific environments
include also, e.g., Ashlagi and Gonczarowski (2018), Troyan (2019), Arribillaga et al. (2020), Arribillaga et al.
(2019), Bade and Gonczarowski (2017), Mackenzie (2020), Mandal and Roy (2020), Mandal and Roy (2021).
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The trump relation is used to model any ex-ante structure the designer knows about
agent preferences: if, for two outcomes x, y ∈ X , we have x ⊵i y (read: “x trumps y”) then all
possible preference types of agent i must (weakly) prefer outcome x to outcome y.4 Formally,
we assume that every preference ranking in the domain is consistent with ⊵i, in the sense
that x ⊵i y implies x ≿i y for all ≿i∈ Pi. The last key assumption that we make is richness: a
preference domain Pi is rich if it contains all strict rankings that are consistent with ⊵i. We
use this model of rich preference domains because it encompasses many disparate economic
environments into one unified framework. This will allow us to easily state general results
that apply to all rich preference domains, and then immediately derive results for canonical
market design applications simply by defining an appropriate trump relation.

Our main contribution is to characterize the full class of OSP mechanisms in all rich
preference environments. Specifically, we show that a mechanism is OSP if and only if it
is (equivalent to) a generalized millipede game. Millipede games were first defined by Pycia
and Troyan (2023) for a more restricted class of preference environments. Roughly speaking,
a millipede game is an extensive-form game of perfect information in which agents are called
to move one at a time. Each time an agent is called to move, she is presented a menu of
payoff-equivalent outcomes, or more simply payoffs, that she can “clinch”. If she selects one of
these options, her payoff is determined, and she leaves the game. She may also be given the
opportunity to “pass”. If she passes, she remains in the game, and may be called again, with
a possibly new set of clinching options in the future. To ensure that the game is OSP, when
an agent passes, the mechanism must make certain payoff guarantees to her in the future.
In the simpler environments of Pycia and Troyan (2023), this amounts to guaranteeing that
the next time she moves, she will be given the opporunity to clinch either (i) everything she
could have clinched before or (ii) everything that was possible, but not clinchable, at her
last move. In this way, the mechanism ensures an agent never “regrets” her decision to pass,
in a formal sense as required by OSP.

The main distinction between a millipede game and a generalized millipede game is in
the payoff guarantees following a passing action: in a standard millipede game, if a payoff
that was previously unclinchable becomes impossible for the agent following a pass, she must
be offered all previously clinchable objects. In a generalized millipede game, this need not
be the case. The extra structure on the preferences gives the designer extra flexibility in
what needs be offered without violating the OSP constraint.

4Note that different agents can have different trump relations, and hence, different preference domains.

3



2 Preliminaries

2.1 Preferences

Let N = {i1, . . . , iN} be a set of agents, and X a finite set of outcomes. An outcome might
involve a monetary transfer; we allow both environments with and without transfers. Each
agent has a preference ranking over outcomes, where, for any two x, y ∈ X , we write x ≿i y to
denote that x is weakly preferred to y. We allow for indifferences, and write x ∼i y if x ≿i y
and y ≿i x. For any ≿i, we let ≻i denote the corresponding strict preference relation, i.e.,
x ≻i y if x ≿i y but not y ≿i x. We use Pi to denote the domain of agent i’s preferences, and
will often refer to ≿i as agent i’s type.

2.2 Obvious dominance

Li (2017) introduces the notion of obvious dominance as a solution concept intended to
capture what games are simple to play.5 To start, let Γ be a finite extensive-form game with
imperfect information and perfect recall, which is defined in the standard way: there is a
finite collection of partially ordered histories, H. We write h′ ⊆ h to denote that h′ ∈ H is
a subhistory of h ∈ H, and h′ ⊂ h when h′ ⊆ h but h ≠ h′. Terminal histories will be denoted
with bars, i.e., h̄. Each h̄ ∈ H is associated with an outcome in X . At every non-terminal
history h ∈ H, one agent, denoted ih, is called to play and has a finite set of actions A(h)

from which to choose. We write h′ = (h, a) to denote the history h′ that is reached by
starting at history h and following the action a ∈ A(h). To avoid trivialities, we assume that
no agent moves twice in a row and that ∣A(h)∣ > 1 for all non-terminal h ∈ H. To capture
random mechanisms, we also allow for histories h at which a non-strategic agent, Nature, is
called to move, and selects an action in A(h) according to some probability distribution.

The set of histories at which agent i moves is denoted Hi = {h ∈ H ∶ ih = i}. The set Ii is
a partition of Hi into information sets, where, for any information set I ∈ Ii and h,h′ ∈ I
and any subhistories h̃ ⊆ h and h̃′ ⊆ h′ at which i moves, at least one of the following two
symmetric conditions obtains: either (i) there is a history h̃∗ ⊆ h̃ such that h̃∗ and h̃′ are in
the same information set, A(h̃∗) = A(h̃′), and i makes the same move at h̃∗ and h̃′, or (ii)

5Pycia and Troyan (2023) generalize Li’s (2017) definition to what they call simple dominance, which
models agents with limited foresight and who thus may only be able to plan for a limited number of moves in
the future at any point in a game (rather than constructing a complete contingent plan, as in almost all of the
game theory literature, including Li (2017)). While obvious dominance is a special case of simple dominance,
the general definition of simple dominance requires additional notation and a novel way to conceptualize what
constitutes a “strategy”. In this paper, we are concerned only with characterizing OSP mechanisms, and so
we present just the simpler definition of obvious dominance, which only requires the standard game-theoretic
notion of a strategy as a complete contingent plan of action.
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there is a history h̃∗ ⊆ h̃′ such that h̃∗ and h̃ are in the same information set, A(h̃∗) = A(h̃),
and i makes the same move at h̃∗ and h̃. We use A(I) to denote the set of actions available
at information set I, and denote by I(h) ∈ Ii the information set containing history h. We
say that an information set I1 precedes information set I2 if there are h1 ∈ I1 and h2 ∈ I2
such that h1 ⊆ h2; we then write I1 ≤ I2 (and I1 < I2 if I1 ≠ I2) and we also say that I2
follows I1 and that I2 is a continuation of I1. We say that an outcome x is possible at
information set I if there is h ∈ I and a terminal history h̄ ⊇ h such that x obtains at h̄.

A strategy for an agent in Γ, Si, is a function that maps each information set I ∈ Ii to
an action in A(I).6 We write Si(≻i) when we want to refer to the strategy of a particular
type ≻i of agent i, and Si(≻i)(I) for the action taken at information set I when agent i under
strategy Si(≻i). We use SN (≻N ) = (Si(≻i))i∈N ,≻i∈Pi

to denote a profile of (type) strategies.
A mechanism (Γ, SN ) is an extensive-form game together with a profile of strategies. Two
mechanisms (Γ, SN ) and (Γ′, S′

N
) are said to be equivalent if, for every profile of types ≻N ,

the distribution of outcomes when the agents follow SN (≻N ) in Γ is the same as when they
follow S′

N
(≻N ) in Γ′. Note that this equivalence definition is purely outcome-based. Given

a mechanism, we can construct the corresponding social choice rule—that is, mapping
from preference profiles to outcomes—that is implemented. All mechanisms in the same
equivalence class implement the same social choice rule.

We are now ready to define the main solution concept of obvious dominance. A strategy
Si(≻i) is obviously dominant for type ≻i of agent i if, at all I∗ ∈ Ii, in the continuation
game starting at I∗, the worst possible outcome when i follows Si(≻i) at all I ∈ Ii is weakly
preferred by type ≻i to the best possible outcome in the continuation game when i follows
some other action a′ ≠ Si(≻i)(I∗) at I∗. If a game Γ admits a profile of strategies SN (≻N )

such that Si(≻i) is obviously dominant for all types ≻i∈ Pi and all agents i, then we say that
the mechanism (Γ, SN ) is obviously strategy-proof (OSP).

3 Preference Environments

The preference model specified in the previous section is very general. At the same time,
in many practical market design applications, more is known about the structure of agents’
preferences, which determines their preference domains Pi. For instance, in an auction en-
vironment, it is known that agents prefer more money to less, and this should be taken into
account when defining their preference domains. Our goal is to cover as many different appli-
cations as possible in one simple, unified framework, so that results for specific applications
will follow as special cases of our general theorems. In this section, we explain how this is

6We focus on pure strategies; the extension to mixed strategies is straightforward.
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done using what we call a trump relation to define the set of admissible preference profiles
in the domain Pi.

3.1 Structural preferences and richness

For each agent i, there is an associated reflexive and transitive binary relation on the set
X , denoted ⊵i; we call ⊵i a trump relation. The motivation is that the designer may
have some information about the structure of an agent’s preference, and knows that some
outcomes are better than (trump) others, for all possible types of agent i. For instance, in
environments with transfers, outcome x trumps outcome y (x ⊵i y) for agent i if i receives
a higher transfer under x than y, and all else is equal. When x ⊵i y but not y ⊵i x, we say
that x strictly trumps y. Varying the trump relations ⊵i is what will allow us to easily
capture many different preference settings as special cases of our result (concrete examples
will be given below).

Trump relations are primitives of the model that capture the structure of possible agent
preferences; that is, the designer knows each agent’s trump relation, and hence her preference
domain Pi, but not her precise preference ≿i in the domain, which may be any preference
that is consistent with ⊵i. Formally, a preference ranking ≿i∈ Pi is consistent with ⊵i if, for
any x, y ∈ X , x ⊵i y implies x ≿i y, and x▷i y implies x ≻i y.7 Given some ⊵i, we assume that
all admissible preference rankings ≿i∈ Pi are consistent with ⊵i. The trump relations for each
agent ⊵i are taken as a primitive of the model, and we allow the possibility that different
agents have different relations, and therefore different preference domains.

If x ⊵i y and y ⊵i x then x and y are ⊵i −equivalent. Any ⊵i determines an equivalence
partition of X . We refer to each element of the equivalence partition as a payoff of the
agent in question. When the distinction between a payoff and an outcome is important we
write [x] i = {y ∈ X ∶ x ⊵i y and y ⊵i x} to represent the payoff (the element of the partition)
that contains x. Elsewhere, to avoid unnecessary formalism, we will write “payoff x”, or
simply just “x”, to refer to the partition element to which outcome x belongs; thus phrases
such as “payoff x obtains” are understood as “some y ∈ [x] i obtains”. With slight abuse of
notation, we will extend ⊵i and ≿i to be defined over payoffs in the natural way, and write,
e.g., x ≻i y to denote that payoff x is strictly prefer to payoff y. A payoff x is said to be
untrumped in a subset of payoffs for agent i if there is no payoff y in this subset such that
y ⊳i x.

The key assumption we make on preference domains is richness, where we say that Pi
is rich if it contains all strict rankings over payoffs that are consistent with ⊵i. We are

7When the trump relation takes the form x ⊵i y if and only if x = y, any domain is consistent with ⊵i.
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agnostic as to whether consistent non-strict rankings belong to Pi or not.8 We make this as-
sumption because it allows us to easily state general results that apply to all rich preference
domains, and then immediately derive results for canonical market design applications sim-
ply by defining an appropriate trump relation. The richness assumption is very flexible, and
encompasses many standard economic environments, including both those with and with-
out transfers. Examples of no-transfer environments include voting (all agents have strict
preferences over X ) and the allocation of indivisible goods (e.g., school choice). An example
of environments with transfers that are captured is auctions of either a single or multiple
goods.9

Given the definition of obvious strategy-proofness, it is natural to ask precisely which
mechanisms are OSP. Pycia and Troyan (2023) characterize the class of obviously dominant
mechanisms for the special case when the trump relations ⊵i are symmetric for all i.10 This
captures many interesting problems. One example is the classical voting environment (e.g.,
Gibbard (1973) and Satterthwaite (1975)), in which agents have strict rankings over all
outcomes in X . Another is the allocation of indivisible objects without transfers, in which
each x ∈ X represents the complete allocation of all of the objects to the agents, but agents
only care about their individual allocation, and are indifferent between how the remaining
goods are allocated across the other agents.11 One prominent application that fits into this
latter setting is the school choice problem (Abdulkadiroğlu and Sönmez, 2003), where the
agents are students and the objects are schools.

While many environments do satisfy the symmetry requirement, there are also economi-
cally interesting settings where it is violated. For instance, symmetry rules out all settings
with transfers. This is because if x, y ∈ X are two outcomes that are equivalent in all respects
except that some agent i receives a higher transfer under x than y, then x trumps y (x ⊵i y)
but y does not trump x (y /⊵i x), and so ⊵i is not symmetric. Therefore, the characterization
theorem of Pycia and Troyan (2023) does not apply to any setting with transfers.12

8Our use of the term richness shares with other uses of the term in the literature the idea that the domain
of preferences contains sufficiently many profiles: if certain preference profiles belong to the domain, then
some other profiles belong to it as well (cf. Dasgupta, Hammond, and Maskin (1979) and Pycia (2012)).

9For details on how to define the relevant trump relations for each of these environments, see Pycia and
Troyan (2023). While richness is very flexible, not all preference domains are rich. For instance, domains of
single-peaked preferences are typically not rich, and Arribillaga, Massó, and Neme (2020) show that some
of our results do not extend to single-peaked preference domains.

10Recall that a binary relation ⊵i is symmetric if x ⊵i y implies y ⊵i x.
11The voting environment is captured by defining ⊵i such that x ⊵i y if and only if x = y for all i, and

richness implies that every strict ranking over x belongs to Pi. Object allocation is captured by defining ⊵i

such that x ⊵i y if and only if agent i receives the same set of goods in allocations x and y. In this case,
each element of agent i’s equivalence partition of X can be identified with the set of objects she receives,
and richness implies that every strict ranking of the sets of possible objects belongs to Pi.

12Li (2017) characterizes OSP mechanisms for the specific environment of binary allocation problems with
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Further, it is not just transfers that are ruled out by symmetry. In a standard object al-
location problem without transfers such as school choice, the trump relations are symmetric,
and richness implies that agents may have any strict over the objects. However, sometimes
the designer may have additional information about the student/agent preferences. For in-
stance, it may be known that schools can be divided into different quality tiers, or that
preferences depend on geography, as in the following example.

Example 1. There are 6 studentsN = {i1, i2, i3, i4, i5, i6} and 6 schools, S = {H,M,P,S,B,L},
which, for concreteness, may be thought of as Harvard, MIT, Princeton, Stanford, Berkeley,
and UCLA, respectively. Each student can be either an “East Coast student”, with prefer-
ence domain PE, or a “West Coast student”, with preference domain PW . The East Coast
students prefer to go to any school on the East Coast (H,M,P ) to any school on the West
Coast (S,B,L), but may have any preference among the set of East Coast schools (and any
preference among the set of West Coast schools). Formally, the preference domain PE is
governed by the trump relation ⊵E defined such that s ⊵E s′ if and only if

1. s = s′, or

2. s ∈ {Harvard,MIT,Princeton} and s′ ∈ {Stanford,Berkeley,UCLA};

otherwise, s ⋭E s′. Given this trump relation, the domain PE satisfies:

1. Consistency: all ≿∈ PE are consistent with ⊵E;13

2. Richness: PE contains all strict rankings of the schools that are consistent with ⊵E.

The domain PW for West Coast students is defined analogously, switching the roles of the
East Coast and West Coast schools.

It is easy to see that this is not a symmetric environment. For example, consider an
East Coast student i such that ⊵i=⊵E and so Pi = PE. Let s = Harvard and s′ = Stanford.
Then, s ⊵E s′, but s′ /⊵E s, and thus ⊵E is not a symmetric relation. Thus, the known
characterizations of OSP mechanisms will not apply to this environment, and a more general
result is needed.

transfers as the class of personal clock auctions. As we show later in the paper, binary allocation problems
with transfers can be modeled in our framework using a particular choice of ⊵i , and personal clock auctions
are a special case of generalized millipede games that are our main object of study.

13For example, preference rankings such as P ≻i M ≻i H ≻i B ≻i L ≻i S and M ≻i P ≻i H ≻i B ≻i L ≻i S
belong to PE , but preference rankings such as P ≻i B ≻i H ≻i M ≻i L ≻i S do not.
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4 Millipede Games

Pycia and Troyan (2023) introduce a class of games called millipede games.14 Roughly
speaking, a millipede game is an extensive-form game of perfect information that satisfies
the following properties, which can be thought of as “structural properties” and “incentive
properties”:

1. Structure: The set of actions can be divided into clinching actions and passing
actions. If an agent selects a clinching action, she never moves again in the game, and
her payoff is completely determined. If an agent selects a passing action, she may be
called to move again, and multiple payoffs are still possible for her. There can be at
most one passing action at each history.

2. Incentives: Following a passing action, the agent who passes is given certain payoff
guarantees that govern the set of payoffs she may receive in the future of the game.

The requirements on the payoff guarantees are such that it is optimal (in a precise sense)
for an agent to choose the passing action if her top still-possible payoff is not clinchable.
The exact nature of these guarantees are determined by the preference environment and
simplicity concepts imposed by the designer. For instance, Pycia and Troyan (2023) provide
the necessary condition on payoff guarantees to ensure the resulting class of millipede games
are all obviously dominant in symmetric preference environments. The main result of this
section gives a more general condition that applies to all rich preference environments.

To formally define a millipede game, first say that payoff x is possible for agent i at
history h if there is a terminal history h̄ ⊇ h such that at the outcome associated with h̄,
agent i obtains payoff x. For any history h, Pi (h) denotes the set of payoffs that are possible
for i at h. We say that agent i has clinched payoff x at history h if agent i is not called to
move at any h′ ⊇ h, and at all terminal histories h̄ ⊇ h, agent i receives payoff x. For h ∈ Hi,
we denote by Ci(h) the set of all payoffs x that i can clinch (or that are clinchable) at
h; that is, Ci(h) is the set of payoffs for which there is an action a ∈ A(h)—referred to as a
clinching action—such that i has clinched x at the history (h, a). At a terminal history h̄,
no agent is called to move and there are no actions; however, it will be notationally useful
to define Ci(h̄) = {x}, where x is the payoff that i obtains at terminal history h̄.

We further define C⊆i (h) = {x ∶ x ∈ Ci(h′) for some h′ ⊆ h s.t. ih′ = i} to be the set of
payoffs that i can clinch at some subhistory of h, and C⊂i (h) = {x ∶ x ∈ Ci(h′) for some h′ ⊊

14Ashlagi and Gonczarowski (2018), Troyan (2019), Bade and Gonczarowski (2017), and Mandal and Roy
(2020) provide characterizations of OSP mechanisms for the specific problem of indivisible object allocation
without transfers. These are all special cases of millipede games.
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h s.t. ih′ = i} to be the set of payoffs that i can clinch at some strict subhistory of h. Note
that while the definition of Ci(h) presumes that i moves at h or h is terminal, the payoff
sets Pi(h), C⊆i (h) and C⊂i (h) are well-defined for any h, whether i moves at h or not, and
whether h is terminal or not.

Finally, consider a history h such that ih′ = i for some h′ ⊊ h and either ih = i or h is a
terminal history. We say that payoff x becomes impossible for i at h if (i) for all h′ ⊊ h,
there exists some x′ ⊵i x such that x′ ∈ Pi(h′) and (ii) for all x′ ⊵i x, x′ ∉ Pi(h). A payoff x
is previously unclinchable at h if, for all x′ ⊵i x, x′ ∉ C⊂i (h).15

Definition 1. A millipede game is a finite extensive-form game of perfect information
that satisfies the following properties:

1. Nature either moves once, at the empty history h∅, or Nature has no moves.

2. At any history at which an agent moves, all but at most one action are clinching
actions, and the remaining action–if there is one–is a passing action (there may be
several clinching actions associated with the same payoff).

3. At all h, if there exists a previously unclinchable payoff z that becomes impossible for
agent ih at h, then for all x ∈ C⊂ih(h): (i) if h is terminal, then y ⊵i x, where y is the
payoff for i that obtains at h, or (ii) if h is a history where agent ih moves, then there
exists an action a ∈ A(h) such that for all y ∈ Pih((h, a)), we have y ⊵i x.

The first two parts of the definition are conditions on the structure of the game tree. The
third part formalizes the idea of “payoff guarantees” following a passing move. In symmetric
preference environments, all payoffs are untrumped, and Part 3 reduces to the condition
of Pycia and Troyan (2023) that if a previously unclinchable payoff x becomes impossible,
then the agent must be offered the opportunity to clinch all payoffs she could have clinched
previously. An equivalent way to re-state this is that if an agent passes, the next time she
moves, she must be given the opportunity to clinch either (i) everything that she could have
clinched before or (ii) everything that was possible, but not clinchable, at her last move.

In more general (i.e., non-symmetric) preference environments, part 3 says that if payoff
z becomes impossible at h, then for every x that i could have clinched previously, she must
be able to guarantee either x or some y that trumps x. There are two subtleties here that
are worth emphasizing. The first is that is that does not say that i must be able to clinch y

15The definitions of clinchable/possible payoffs refer to a single payoff x, while the definition of becoming
impossible refers to the class of all payoffs that trump x. When ⊵i is symmetric, this is a singleton, and so
x becomes impossible when x itself disappears. In more general environments, there may be a larger class
of payoffs that trump x, and so x becomes impossible only when all payoffs x and everything that trumps x
are no longer possible. The same comment applies to a payoff being previously unclinchable.
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or something better, but only that she must be able to guarantee that she will get something
better than y. For instance, if i’s trump relation is such that y′′ ▷i y′ ▷i y, then it known
that all types of agent i must be such that y′′ ≻i y′ ≻i y. Then, it is feasible that there is an
action at h that does not clinch either y′′ or y′, but following this action, i will get either y′′

or y′.
Our characterization of OSP games and mechanisms involves the simple following strat-

egy: given a type ≻i, we call strategy Si(≻i) a greedy strategy if, for any h at which i

can clinch her best still-possible payoff x, the action Si(≻i)(h) is one that clinches x for the
agent; otherwise, the agent passes. We refer to millipede games with greedy strategies as
millipede mechanisms.

Theorem 1. Every OSP mechanism is equivalent to a generalized millipede mechanism.
Every generalized millipede mechanism is OSP.

Since millipede mechanisms are a special case of generalized millipede mechanisms, it
is immediate that anything that can be implemented by a millipede mechanism can be
implemented by a generalized millipede mechanism. In some environments in which at least
one agent’s trumping relation is not symmetric, strictly more social choice rules can be
implemented via generalized millipede mechanisms relative to what can be implemented by
millipede mechanisms. The examples presented in the next section illustrate some aspects
of the increased flexibility of generalized millipede mechanisms.

Examples of generalized millipede mechanisms

We now present three examples of generalized millipede games in specific environments.

Example 2. The first example we consider is the allocation of a single good with transfers.
For this problem, one of the most studied mechanisms is the ascending auction, in which
there is a going price, and at each step, agents are asked whether they want to continue in
the auction at that price, or quit. The price rises until all agents but one have quit, and the
remaining agent gets the object at the final price.

Li (2017) shows that ascending auctions are OSP; indeed, ascending auctions are also a
special case of generalized millipede mechanisms. Part 1 of Definition 1 is trivial. For Part
2, note that at each step, an agent has one passing action (“continue”) and one clinching
action (“quit”, or “clinch a payoff of zero”), and so Part 2 is also satisfied. Part 3 follows from
the fact that every time the price rises, an agent is offered the opportunity to quit.

A generalization of the single-unit auction is what Li (2017) refers to as binary allocation
problems, defined as follows. The set of outcomes is X = Y ×RN , where Y ⊆ {0,1}N is a set
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of feasible allocations and RN is the set of profiles of transfers, one for each agent; a generic
allocation is denoted y and a generic profile of transfers w = (wi)i∈N . In this section, we
denote types by θi ∈ [θi, θi], where 0 ≤ θi < θi < ∞, and assume each agent has preferences
represented by a quasilinear utility function: ui(θi, y,w) = θiyi +wi.16

This framework captures many important environments of economic interest, including
single-unit auctions, procurement auctions, and binary public goods games. Li (2017) shows
that in these environments, every OSP mechanism is equivalent to a personal clock auction.
A personal clock auction is similar to an ascending auction, but generalizes it in the following
ways: first, agents may face different individualized prices (“clocks”); second, at any point,
there may be multiple quitting actions that allow agents to drop out of the auction, or
multiple continuing actions that allow them to stay in the auction; and third, when an agent
quits, her transfer need not be zero. The key restrictions are that each agent’s clock must be
monotonic, and that whenever the personal price an agent faces strictly changes, she must
be offered an opportunity to quit.

It is straightforward to verify that this environment satisfies richness, with the trump
relation ⊵i for agent i defined as follows: (y,w) ⊵i (y′,w′

) if and only if wi ≥ w′

i and yi ≥ y′i.
Therefore, Theorem 1 applies. Indeed, personal clock auctions are a special case of gener-
alized millipede games (for essentially the same reasons as outlined for ascending auctions
above), and so we recover Li’s (2017) result as a special case of our general theorem.

The next example highlights that the added generality of Theorem 1 goes beyond just
adding transfers.

Example 3. Consider the preference environment of Example 1, in which i1 is a West Coast
student with preference domain PW and i2 is an East Coast student with preference domain
PE.17 Figure 1 shows an example of a generalized millipede game for this environment. For
brevity, we present only the beginning of the game that assigns students i1 and i2, and use
dots to indicate the continuation game on the remaining students. We present this example
because it is a nontrivial instance of a generalized millipede game that is not a millipede
game in the original sense defined in Pycia and Troyan (2023). To see this, consider the
history following i1 passing and i2 clinching H, where i1 is now offered a choice between S
and B. At this history, L is a previously unclinchable payoff that has become impossible, so,
a standard millipede game would require i1 to be offered H,M and P . But, H has already

16Note that this assumes a continuum of types and transfers, which we do in order to reproduce the binary
allocation environment of Li (2017). The definition of generalized millipede games extends trivially to this
set up.

17The game in Figure 1 remains OSP when the planner does not know which are the East Coast and
which are the West Coast students, and desiring to design a game that is OSP no matter which type (East
or West) each student turns out to be.
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Figure 1: A generalized millipede game for the preference environment in Example 1. The
dots indicate that the game continues in some manner consistent with a generalized milli-
pede game (for instance, one possibility is a serial dictatorship on the remaining unassigned
agents).

been claimed by i2 here, and so this is not possible. It is the extra preference structure
that allows us to offer only S and B, while still retaining OSP: if i1 passes on H,M and
P initially, then the mechanism is able to infer that she is a West Coast student, and so
S,B ≻i1 H,M,P . Therefore, her worst case from passing at the initial node is some West
Coast school, which is better than any East Coast school, and so the game is OSP.

In the previous example, the agents’ preference domains were asymmetric: some were
East Coast students, and some were West Coast students. As a final example, we show that
this feature is not necessary for constructing nontrivial generalized millipede games. This
also highlights the generality of our model by giving another example of an instance that fits
into the preference setting.

Example 4. There are a set of public schools S = {H1,H2, L1, L2,A}, and 5 students,
N = {i1, i2, i3, i4, i5}. All students have the same preference domain P , governed by a trump
relation ⊵ constructed as follows: s ⊵ s′ if and only if either (i) s = s′ or (ii) s ∈ {H1,H2}

and s′ ∈ {L1, L2}. The interpretation is that the H schools are “high-performing” while the
L schools are “low-performing”, and all students prefer a high-performing school to a low-
performing school. The remaining school, A, is not ⊵ −related to any other school. We can
think of A as a special program, such as an Arts school, which can rank anywhere in an
agent’s preferences: if a student is an Arts student, then she may rank school A highly, but
if not, she may rank school A low, and it is not known to the designer which students are
the Arts students and which are not.
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Figure 2: A generalized millipede game for Example 2. The dots indicate that the game
continues in some manner consistent with a generalized millipede game (for instance, a serial
dictatorship on the remaining unassigned agents).

Figure 2 shows a generalized millipede game for this environment. Once again, this game
is not a standard millipede game in the sense of Pycia and Troyan (2023). To see this,
note that at the history where i1 is offered a choice between H1 and H2, payoffs L1 and L2

both become impossible, and were both previously unclinchable. Thus, a (non-generalized)
millipede game would require that i1 be offered everything that was previously clinchable.
This means that i1 would need to be offered A, which cannot happen here because A has
already been claimed by i2. In a symmetric environment (e.g., object allocation without the
additional structure imposed here), this would violate OSP. In this environment, though,
when i1 passes on A, because of the structural preference ⊵, the mechanism can infer that
she is not an Arts student, and so i1’s top choice must be either H1 or H2. Thus, this
is all that needs to be offered to ensure the worst-case criterion is satisfied. The more
expansive definition of a generalized millipede game presented in this paper expands the
class in precisely a way that allows for this possibility.

Note also that, while there are no transfers, this game does have the flavor of an ascending
auction: each time an agent is called to play, she is offered A, which is akin to being offered
the opportunity to quit in an ascending auction. In an auction, this price discovery allows
the mechanism to infer the agent’s value for the object. Here, the preference structure is such
that the relative rankings of {H1,H2} and {L1, L2} are known, but nothing is known about
A. As the mechanism progresses, it learns more about the “value” of A relative to the other
objects: If i1, say, clinches A the first time it is offered, it must be her top-ranked object; if
i1 passes, then the mechanism now infer that A must be ranked below {H1,H2} (because if
i1 passes, the next time she moves, it may be that both H1 and H2 have disappeared as a
possibility for her). As the agents continue to pass on A, it becomes known that A moves
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further down in their preference lists.
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A Proof of Theorem 1

The proof of this theorem builds on the proof of Theorem 5 of Pycia and Troyan (2023).
While similar in structure, the proof in Pycia and Troyan (2023) is only valid for symmetric
trump relations, and additional arguments are needed to account for more general preference
environments. Recall that Pi(h) and Ci(h) denote the sets of possible and clinchable payoffs,
respectively, for agent i at history h. We further say payoff x is guaranteeable for i at h if
there is some continuation strategy Si such that i receives payoff x at all terminal histories
h̄ ⊇ h that are consistent with i following Si. We use Gi(h) to denote the set of payoffs that
are guaranteeable for i at history h.

We also make use of the Li’s (2017) Pruning Principle, which says that, starting with
any OSP mechanism (Γ, S), we can create a new game Γ′ by deleting all histories of Γ

that are never reached for any type profile under S—called the pruned game—such that
the restriction of S to Γ′ is obviously dominant for Γ′, and both games result in the same
outcome. (See Li (2017) for a more formal statement.)

We break this proof up into two propositions, corresponding to the two statements in the
theorem.

Proposition 1. Every OSP mechanism is equivalent to a generalized millipede mechanism
with greedy strategies.

Proof of Proposition 1. To begin, note that it is without loss of generality to consider only
perfect information OSP games in which Nature moves at most once, as the first mover;18

this corresponds to part 1 in the definition of a generalized millipede game (Definition 1).
We now prove two lemmas that correspond to parts 2 and 3 of Definition 1.

Lemma 1. For any OSP game Γ, there exists an equivalent OSP game Γ′ such that: (i) at
each h, at least ∣A(h)∣ − 1 actions are clinching actions; (ii) for every payoff x ∈ Gi(h), there
exists an action ax ∈ A(h) that clinches x for i; and, (iii) if Pi(h) = Gi(h), then all actions
in A(h) are clinching actions, and ih′ ≠ i for any h′ ⊋ h.

Proof. We begin by proving the following claim, which says that there is at most one
action such that, following this action, not all possible payoffs are guaranteeable.19

18This simple observation was first pointed out in a footnote by Ashlagi and Gonczarowski (2018); Pycia
and Troyan (2023) provide the complete proof. See also ?, who generalizes this even further by relaxing
recall requirements.

19A related claim appears as Lemma A2 of Pycia and Troyan (2023). Their proof is not valid for non-
symmetric trump relations.
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Claim 1. Let Γ be an obviously strategy-proof game of perfect information that is pruned
with respect to the obviously dominant strategy profile SN . Consider a history h where agent
ih = i is called to move. There is at most one action a∗ ∈ A(h) such that Pi((h, a∗)) /⊆ Gi(h).

Proof of Claim 1. For any history h, let PnGi(h) = Pi(h) ∖ Gi(h) (where “PnG” is
shorthand for ”possible but not guaranteeable”). Now, consider any h at which i moves, and
assume that at h, there are (at least) two such actions a∗1, a∗2 ∈ A(h) as in the statement. We
first claim that PnGi(h) ∩ Pi(h∗1) ∩ Pi(h∗2) = ∅, where h∗1 = (h, a∗1) and h∗2 = (h, a∗2). Indeed,
if not, then let x be a payoff in this intersection. By pruning, some type ≻i is following
some strategy such that Si(≻i)(h) = a∗1 that results in a payoff of x at some terminal history
h̄ ⊇ (h, a∗1). Note that Top(≻i, Pi(h)) ≠ x, because otherwise a∗1 would not be obviously
dominant for this type (since x ∉ Gi(h) and x ∈ Pi(h∗2)). Thus, let Top(≻i, Pi(h)) = y. Note
that y ∉ Gi(h) (or else it would not be obviously dominant for type ≻i to play a strategy
such that x is a possible payoff). Further, we must have y ∈ Pi(h∗1) and y ∉ Pi(h∗2). To see
the former, note that if y ∉ Pi(h∗1), then a∗1 is not obviously dominant for type ≻i, which
contradicts that Si(≻i)(h) = a∗1; given the former, if y ∈ Pi(h∗2), then once again a∗1 would not
be obviously dominant for type ≻i. Now, again by pruning, there must be some type ≻′i such
that Si(≻

′

i)(h) = a
∗

2 that results in payoff x at some terminal history h̄ ⊇ (h, a∗2). By similar
reasoning as previously, Top(≻′i, Pi(h)) ≠ x, and so Top(≻′i, Pi(h)) = z for some z ∈ Pi(h∗2).
Since y ∉ Pi(h∗2), we have z ≠ y, and we can as above conclude that z ∉ Gi(h). It is without
loss of generality to consider a type ≻

′

i such that Top(≻′i, Pi(h) ∖ {z}) = y.20 Note that, for
this type, no action a ≠ a∗2 can obviously dominate a∗2 (since z ∉ Gi(h)). Further, a∗2 itself
is not obviously dominant for this type, since the worst case from a∗2 is strictly worse than
y (since y ∉ Pi(h∗2) and z ∉ Gi(h)), while y ∈ Pi(h∗1). Therefore, this type has no obviously
dominant action at h, which is a contradiction.

Thus, PnGi(h) ∩Pi(h∗1) ∩Pi(h∗2) = ∅, which means there must be distinct x, y such that
(i) x, y ∈ PnGi(h) (ii) x ∈ Pi(h∗1) but x ∉ Pi(h∗2) and (iii) y ∈ Pi(h∗2) but y ∉ Pi(h∗1). Also,
note that y′ ▷i y implies y′ ∉ Pi(h∗1)—indeed, if there were such a y′, then it would not be
obviously dominant for any type to play a strategy such that Si(h) = a∗2 and y is a possible
outcome; by similar logic, x′▷i x implies x′ ∉ Pi(h∗2). Since we also know that y ∉ Pi(h∗1), we
can further write y′ ⊵i y implies y′ ∉ Pi(h∗1); similarly, x′ ⊵i x implies x′ ∉ Pi(h∗2).

Next, we show that for all types of agent i that reach h, it must be that Top(≻i, Pi(h)) ≠

x, y. To start, assume that there is a type that reaches h such that Top(≻i, Pi(h)) = x. Let
y′ ∈ Pi(h) be such that y′ ⊵i y and y′ is untrumped in Pi(h), where it may be that y′ = y if y

20Note that y and z must both be undominated in Pi(h)—there is no w ∈ Pi(h) such that w ▷i y or
w▷i z—or else it would be impossible for them to be the top-ranked payoffs for types ≻i and ≻

′

i, respectively.
This, combined with richness, means that we can find such a type.
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itself is untrumped. Consider a type such that Top(≻i, Pi(h) ∖ {x}) = y′, and that continues
by ranking every y′′ such that y′′ ⊵i y immediately following y′, in a way that is consistent
with ⊵i. Note that this type has no obviously dominant action at h: first, no action can
obviously dominate a∗1, since x ∉ Gi(h). Second, a∗1 itself cannot be obviously dominant.
This is because, the worst case from a∗1 is strictly worse than y (since x ∉ Gi(h) and y′ ⊵i y
implies y′ ∉ Pi(h∗1)), while y ∈ Pi(h∗2). Thus, this type has no obviously dominant action at
h, which is a contradiction. Therefore, Top(≻i, Pi(h)) ≠ x for any type ≻i that reaches h; an
analogous argument shows that Top(≻i, Pi(h)) ≠ y for any type that reaches h as well.

Thus, for all types that reach h, it must be that Top(≻i, Pi(h)) ≠ x, y; further, by pruning,
some such type is playing a strategy such that Si(≻i)(h) = a∗1 and x is a possible payoff. Let
Top(≻i, Pi(h)) = z for this type. The fact that Si(≻i)(h) = a∗1 implies that z ∈ Pi(h∗1) and
z ∉ Gi(h) (if either were false, then it would not obviously dominant for this type to play a
strategy such that Si(≻i)(h) = a∗1 and x is a possible payoff); in other words, z ∈ PnGi(h),
and z ∈ Pi(h∗1). Since we just showed that PnGi(h)∩Pi(h∗1)∩Pi(h∗2) = ∅, we have z ∉ Pi(h∗2).
Further, z is untrumped in Pi(h) by construction, so y ⋭i z; further, z ⋭i y, or else it would
not be obviously dominant for any type to follow a strategy such that Si(h) = a∗2 and y is a
possible outcome. Let y′ ∈ Pi(h) be such that y′ ⊵i y and y′ is untrumped in Pi(h), where it
may be that y′ = y if y itself is untrumped. Consider a type ≻i such that Top(≻i, Pi(h)) = z

and Top(≻i, Pi(h) ∖ {z}) = y′, and that continues by ranking every y′′ such that y′ ⊵i y′′ ⊵i y
immediately after y′. This type has no obviously dominant action at h: since z ∉ Gi(h) and
z ∈ Pi(h∗1), no action a ≠ a∗1 can obviously dominate a∗1; however, the worst case from a∗1 is
strictly worse than y (since z ∉ Gi(h) and y′ ⊵i y implies y′ ∉ Pi(h∗1)), while y ∈ Pi(h∗2), and
so a∗1 itself is also not obviously dominant, which is a contradiction. ∎

Now, taken any OSP mechanism (Γ, SN ) with perfect information such that Nature moves
once, as the first mover. Further, prune this game according to the obviously dominant
strategy profile SN = (Si(≻i))i∈N . With slight abuse of notation, we denote this pruned,
perfect information mechanism by (Γ, SN ). By Claim 1, for each h, all but at most one action
(denoted a∗) in A(h) satisfy Pi((h, a)) ⊆ Gi(h); this means that any obviously dominant
strategy for type ≻i that does not choose a∗ at h guarantees the best possible payoff in Pi(h)

for type ≻i.21 Let

Si(h) = {S′i ∶ S
′

i(h) ≠ a
∗ and S′i is the obviously dominant strategy of some type ≻i that reaches h}.

21Consider a type ≻i such that the best possible payoff in Pi(h) is x. Since type ≻i is choosing Si(h) =
a′ ≠ a∗, we must have x ∈ Pi((h, a

′
)), and, by Claim 1, x is guaranteeable at h. If type ≻i was playing a

strategy Si that did not guarantee x, this strategy would not be obviously dominant (because there is some
other strategy, S′i, that does guarantee x).
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By definition, each S′i ∈ Si(h) guarantees a unique payoff for i if she plays strategy S′i starting
from history h, no matter what the other agents do. We create a new game Γ′ that is the
same as Γ, except we replace the subgame starting from history h with a new subgame
defined as follows. If there is an action a∗ such that Pi((h, a∗)) /⊆ Gi(h) in the original game
(of which there can be at most one), then there is an analogous action a∗ in the new game,
and the subgame following a∗ is exactly the same as in the original game Γ. Additionally,
there are M = ∣Si(h)∣ other actions at h, denoted a1, . . . , aM . Each am corresponds to one
strategy Sm

i ∈ Si(h), and following each am, we replicate the original game, except that at
any future history h′ ⊇ h at which i is called on to act, all actions (and their subgames) are
deleted and replaced with the subgame starting from the history (h′, a′), where a′ = Sm

i (h′)

is the action that i would have played at h′ in the original game had she followed strategy
Sm
i (⋅). In other words, if i’s strategy was to choose some action a ≠ a∗ at h in the original

game, then, in the new game Γ′, we ask agent i to “choose” not only her current action, but
all future actions that she would have chosen according to Sm

i (⋅) as well. By doing so, we
have created a new game in which every action (except for a∗, if it exists) at h clinches some
payoff x, and further, agent i is never called upon to move again.

The remainder of the proof of the lemma follows the argument in Pycia and Troyan (2023)
and is included for completeness. We construct strategies in Γ′ that are the counterparts of
strategies from Γ, so that for all agents j ≠ i, they continue to follow the same action at every
history as they did in the original game, and for i, at history h in the new game, she takes
the action am that is associated with the strategy Sm

i in the original game. By definition if
all the agents follow strategies in the new game analogous to the their strategies from the
original game, the same outcome will be reached, and so Γ and Γ′ are equivalent under their
respective strategy profiles.

We must also show that if a strategy profile is obviously dominant for Γ, this modified
strategy profile is obviously dominant for Γ′. To see why the modified strategy profile is
obviously dominant for i, note that if her obviously dominant action in the original game was
part of a strategy that guarantees some payoff x, she now is able to clinch x immediately,
which is clearly obviously dominant; if her obviously dominant strategy was to follow a
strategy that did not guarantee some payoff x at h, this strategy must have directed i to
follow a∗ at h. However, in Γ′, the subgame following a∗ is unchanged relative to Γ, and
so i is able to perfectly replicate this strategy, which obviously dominates following any
of the clinching actions at h in Γ′. In addition, the game is also obviously strategy-proof
for all j ≠ i because, prior to h, the set of possible payoffs for j is unchanged, while for
any history succeeding h where j is to move, having i make all of her choices earlier in
the game only shrinks the set of possible outcomes for j, in the set inclusion sense. When
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the set of possible outcomes shrinks, the best possible payoff from any given strategy only
decreases (according to j’s preferences) and the worst possible payoff only increases, and so,
if a strategy was obviously dominant in the original game, it will continue to be so in the new
game. Repeating this process for every history h, we are left with a new game where, at each
history, there are only clinching actions plus (possibly) one passing action, and further, every
payoff that is guaranteeable at h is also clinchable at h, and i never moves again following a
clinching action. This shows parts (i) and (ii). Part (iii) follows immediately from part (ii),
due to greedy strategies and the pruning principle. ∎

The above lemma shows that every OSP game is equivalent to one with at most one
passing action at each history, which is Part 2 of Definition 1. The next lemma shows Part
3 of Definition 1, which deals with the payoff guarantees when an agent passes and some
possible payoffs become impossible the next time she moves.

Lemma 2. Let (Γ, SN ) be a obviously strategy-proof mechanism that satisfies the conclusions
of Lemma 1. At all h, if there exists a previously unclinchable payoff z that becomes impossible
for agent ih at h, then for all x ∈ C⊂ih(h): (i) if h is terminal, then x′ ⊵i x, where x′ is the
payoff for i that obtains at h, or (ii) if h is a history where agent ih moves, then there exists
an action a ∈ A(h) such that for all x′ ∈ Pih((h, a)), we have x′ ⊵i x.

Proof. We start by defining an additional piece of notational that will be useful. Let

Ḡ(Si, h
′
) = {x ∶ x is a payoff for i at some terminal h̄ ⊇ h′ consistent with i following Si}.

This generalizes the notion of a guaranteeable payoff to a guaranteeable set of payoffs. In
other words, by following strategy Si starting at h′, i can guarantee that her payoff will be
something in the set Ḡ(Si, h′), but cannot guarantee which particular payoff in this set she
will receive; note that if x ∈ Gi(h′), then there is some strategy Si such that Ḡ(Si, h′) = {x}

(indeed, by Lemma 1, x is not only guaranteeable, but also clinchable at h′, and so any
strategy such that Si(h′) clinches x will have Ḡ(Si, h′) = {x}).

Now, let h be any earliest history where some agent imoves such that there is a previously
unclinchable payoff z that becomes impossible at h (the case for terminal histories will be
dealt with separately below). This means that i moves at some strict subhistory h′ ⊊ h, and
the following are true:

(a’) For all z′ ⊵i z, z′ ∉ Pi(h);
(b’) For all h′ ⊊ h such that ih′ = i, there exists some z′ ∈ Pi(h′) such that z′ ⊵i z;
(c’) For all z′ ⊵i z, z′ ∉ C⊂i (h).
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Take some x ∈ C⊂i (h). If there exists a clinching action a ∈ A(h) that clinches some x′ ⊵i x
for i, then we are done. Thus, assume towards a contradiction that there exists some payoff
x ∈ C⊂i (h) such that there is no clinching action a ∈ A(h) that clinches some x′ ⊵i x for i.
Note that this, combined with Lemma 1, part (ii) implies the following:

(*) For any x′ ⊵i x, we have x′ ∉ Gi(h).

Consider a type ≻i∶ z1, z2 . . . , z, . . ., where {z1, z2,⋯, z} is the set of all of the payoffs that
⊵i-dominate z, and the notation means that type ≻i ranks all payoffs in this set higher than
any payoff not in the set, in some way that is consistent with ⊵i. By (b’) and (c’), any
obviously dominant strategy must have type ≻i passing at all h′ ⊊ h where she is called to
move.

Claim 2. There must exist a strategy S̃i such that for any x′ ∈ Ḡ(S̃i, h), we have x′ ⊵i x.
Further, for this strategy, we have ∣Ḡ(S̃i, h)∣ ≥ 2.

Proof of claim. To show the first part, assume to the contrary that for all S′i, there exists
some y ∈ Ḡ(S′i, h) such that y ⋭i x. Consider a type ≻i∶ z1, z2 . . . , z, x1, x2, . . . , x, . . ., where
{z1, z2, . . . , z} is the set of all payoffs that ⊵i −dominate z, and {x1, x2, . . . , x} is the set of
all payoffs that ⊵i −dominate x and not z.22 At any h′ ⊊ h, any obviously dominant strategy
must have this type passing. Now, consider h itself. For any y ∈ Ḡ(S′i, h), the worst case
outcome for type ≻i from S′i starting from h is some payoff that is weakly worse than y.
Further, there exists a y ∈ Ḡ(S′i, h) that is strictly worse than x, which follows from y ⋭i x

and y ⋭i z, where the latter is because z1, z2, . . . , z ∉ Pi(h), by (a’). However, we also have
x ∈ Ci(h′) for some h′ ⊊ h, and so, the best case outcome from clinching x at h′ is x. This
implies that type ≻i does not have an obviously dominant strategy, a contradiction.

To show that ∣Ḡ(S̃i, h)∣ ≥ 2, assume that ∣Ḡ(S̃i, h)∣ = 1, which means that Ḡ(S̃i, h) = {x′}

for some x′ ⊵i x. This implies that x′ ∈ Gi(h), which contradicts (*), and so we conclude
that, ∣Ḡ(S̃i, h)∣ ≥ 2. ∎

The previous claim shows that if x was previously clinchable and nothing dominating it
is clinchable at h, then there at least must be a strategy that, starting from h, guarantees
some set of payoffs that all weakly dominate x. The next claim shows that at h, there must
exist a passing action, and further, all payoffs that are possible after passing must weakly
dominate x.

Claim 3. There must be a passing action a∗ ∈ A(h), and for all x′ ∈ Pi((h, a∗)), we have
x′ ⊵i x.

22Note that x ⋭i z, by condition (c’), and so x ∉ {z1, z2, . . . , z}. However, there may be payoffs that
dominate both z and x; such payoffs are included in {z1, z2, . . . , z}.
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Proof of claim. Let S̃i be the strategy in the statement of Claim 2, and note that for
any x′ ∈ Ḡ(S̃i, h), we have x′ ∉ Ci(h), by (*). Therefore, x′ can only be possible following a
passing action at h, and so such an action a∗ must exist.

It remains to prove the second part of the claim. By way of contradiction, assume that
there is some y ∈ Pi((h, a∗)) such that y ⋭i x. First, note x ⋭i y. To see why, note that if
x ⊵i y, then y ⋭i x and x ⊵i y implies x ≻i y for all types ≻i of agent i. Because the game is
pruned, there exists a type ≻i such that outcome y is on-path for this type’s OSP strategy
Si(≻i). However, i could have clinched x at some history h′ ⊂ h, which contradicts that
Si(≻i) is obviously dominant. Thus, x ⋭i y. Further, since y ⋭i x, we have y ∉ Ḡ(S̃i, h), by
Claim 2.

Now, let x̄ be a payoff that is undominated in Ḡ(S̃i, h), i.e., for any other x′ ∈ Ḡ(S̃i, h),
x′ ⋭i x̄. Note also that for all x′ ∈ Ḡ(S̃i, h), y ⋭i x′ since otherwise, y ⊵i x′ and x′ ⊵i x

would imply y ⊵i x. By richness, there exists a type such that ≻i∶ z1, z2,⋯, z,⋯, x̄, y,⋯, x,⋯;
in words, type ≻i ranks z and everything that dominates it highest, followed by everything
that dominates x̄ but not z (which are therefore not possible at h), followed by immediately
by y, followed by everything else.

Let Si(≻i) be this type’s obviously dominant strategy. Note that for any h′ ⊆ h, Si(≻i)

must be the passing action. This includes at h itself, by (*). Also by (*) and the construction
of ≻i, the worst case from Si(≻i) for type ≻i starting from h is strictly worse than x̄. If
Si(≻i) ≠ S̃i, then Si(≻i) is not obviously dominant, since x̄ is possible from S̃i. Thus, the
only remaining possibility is that is Si(≻i) = S̃i. In this case, the worst case from Si(≻i)

is strictly worse than y. This follows because in Claim 2, we showed that Ḡ(S̃i, h) has at
least two elements, and by construction of ≻i, one of these must be strictly worse than x̄,
and, since y ∉ Ḡ(S̃i, h), also strictly worse than y. On the other hand, since y ∈ Pi((h, a∗)),
there is some other strategy S′i ≠ S̃i where y is an on-path outcome if i follows S′i starting
from h. But this means that Si(≻i) = S̃i is not obviously dominant for type ≻i, either, a
contradiction. ∎

The previous claim completes the argument for all nonterminal histories at which an
agent i moves. Last, we must consider the case where h is a terminal history, h = h̄. As
above, let z be a payoff such that (a’), (b’), and (c’) hold (replacing h with h̄). Recall that
for terminal histories, we define Ci(h̄) = {y} for all i, where y is the payoff that obtains at
h̄. Towards a contradiction, assume that there exists some h′ ⊊ h̄ such that ih′ = i and some
x ∈ Ci(h′) such that y ⋭i x. Note that we also have y ⋭i z (by (a’)) and x ⋭i z (by (c’)).
In other words, x, y, z must all be distinct payoffs for i such that y ⋫i z, x ⋫i z, and y ⋫i x.
Thus, by richness, there exists a type such that z ≻i x ≻i y (there may be other payoffs ranked
above z and in between z, x, and y). By (b’) and (c’), there is some z′ ⊵i z possible at every
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h ⊊ h̄ where i is to move, but no z′ ⊵i z is clinchable at any such history. Thus, any obviously
dominant strategy of type ≻i must have agent i passing at any such history. However, at h′,
i could have clinched x, and so this strategy is not obviously dominant (because outcome y
is on-path from the proposed strategy), which is a contradiction. ∎

Lemmas 1 and 2 complete the proof of Proposition 1. ∎

Proposition 2. Every generalized millipede mechanism is OSP.

Proof of Proposition 2. Let Γ be a millipede game. Let Top(≻i,X ′
) denote the best

possible payoff in the set X ′ according to preferences ≻i. Using this notation, a strategy
Si(≻i) is a greedy strategy if, whenever Top(≻i,Ci(h)) = Top(≻i, Pi(h)), the action Si(≻i)(h)

clinches the top payoff in Pi(h), and if Top(≻i,Ci(h)) ≠ Top(≻i, Pi(h)), then Si(≻i)(h) passes
at h.23

Consider some profile of greedy strategies (Si(⋅))i∈N . It is clear that if Top(≻i,Ci(h)) =

Top(≻i, Pi(h)), then clinching the top payoff is obviously dominant at h. What remains to
be shown is if Top(≻i,Ci(h)) ≠ Top(≻i, Pi(h)), then passing is obviously dominant at h.

Assume that there exists a history h that is on the path of play for type ≻i when following
Si(≻i) such that Top(≻i,Ci(h)) ≠ Top(≻i, Pi(h)), yet passing is not obviously dominant at
h; further, let h be any earliest such history for which this is true. To shorten notation, let
xP (h) = Top(≻i, Pi(h)), xC(h) = Top(≻i,Ci(h)), and let xW (h) be the worst possible payoff
from passing (and continuing to follow Si(≻i) at all future nodes).

First, note that xW (h) ≿i xW (h′) for all h′ ⊊ h such that ih′ = i. Since passing is obviously
dominant at all h′ ⊊ h, we have xW (h′) ≿i xC(h′), and together, these imply that xW (h) ≿i

xC(h′) for all such h′. At h, since passing is not obviously dominant and all other actions are
clinching actions, we have xC(h) ≻i xW (h); further, since Top(≻i,Ci(h)) ≠ Top(≻i, Pi(h)),
there must be some x′ ∈ Pi(h) ∖ Ci(h) such that x′ ≻i xC(h) ≻i xW (h). The above implies
that x′ ≻i xC(h) ≻i xC(h′) for all h′ ⊊ h such that ih′ = i.

Let X0 = {x′ ∶ x′ ∈ Pi(h) and x′ ≻i xC(h)}; in words, X0 is a set of payoffs that are
possible at all h′ ⊆ h, and are strictly better than anything that was clinchable at any h′ ⊆ h
(and therefore have never been clinchable themselves). Order the elements in X0 according
to ≻i, and wlog, let x1 ≻i x2 ≻i ⋯ ≻i xM .

Consider a path of play starting from h that is consistent with Si(≻i) and ends in a
terminal history h̄ at which i receives xW (h). For every xm ∈ X0, let hm denote the earliest
history on this path such that xm ∉ Pi(hm) and either (i) ih = i or (ii) hm is terminal. Note
that because i is ultimately receiving payoff xW (h), such a history hm exists for all xm ∈X0.

23There may be multiple ways for i to clinch payoff x at h. Further, x may still be possible if i passes at
h.
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Let ĥ = max{h1, h2, . . . , hM} (ordered by ⊂); in words, ĥ is the earliest history at which no
payoffs in X0 are possible any longer. Further, let ĥ−m = max{h1, . . . , hm−1}, i.e., ĥ−m is the
earliest history at which all payoffs strictly preferred to xm are no longer possible.

For all xm ∈X0 and all h′ ⊆ h̄, we have xm ∉ Ci(h′).
First, note that xm ∉ Ci(h′) for any h′ ⊆ h by construction. We will show that xm ∉ Ci(h′)

at any h̄ ⊇ h′ ⊃ h as well. Start by considering m = 1, and assume x1 ∈ Ci(h′) for some
h̄ ⊇ h′ ⊃ h. By definition, x1 = Top(≻i, Pi(h)); since h′ ⊃ h implies that Pi(h′) ⊆ Pi(h), we
have that x1 = Top(≻i, Pi(h′)) as well. Since x1 ∈ Ci(h′) by supposition, greedy strategies
direct i to clinch x1, which contradicts that she receives xW (h).24

Now, consider an arbitrary m, and assume that for all m′
= 1, . . . ,m−1, payoff xm′ is not

clinchable at any h′ ⊆ h̄, but xm is clinchable at some h′ ⊆ h̄. Let xm′ ≻i xm be (a) payoff
that becomes impossible at ĥ−m. There are two cases:

Case (i): h′ ⊂ ĥ−m. This is the case in which xm is clinchable while there is some strictly
preferred payoff xm′ ≻i xm that is still possible. Since xm′ is (by definition) the last payoff in
{x1, . . . , xm−1} to become impossible, we can conclude that xm′ becomes impossible at ĥ−m.
Further, by the induction step, all {x1, . . . , xm−1} are previously unclinchable at ĥ−m, and so
xm′ is previously unclinchable at ĥ−m. Thus, by point 3 in the definition of a millipede game,
there must be some action a ∈ A(ĥ−m) such that for all y ∈ Pi((ĥ−m, a)), y ⊵i xm. Since all
payoffs strictly preferred to xm are no longer possible at ĥ−m, we must have y = xm, and xm
is clinchable at ĥ−m. Thus, xm is the best remaining payoff at ĥ−m, and is clinchable, and so
greedy strategies direct i to clinch xm at ĥ−m, which contradicts that she receives xW (h).25

Case (ii): h′ ⊇ ĥ−m. In this case, xm becomes clinchable after all strictly preferred
payoffs are no longer possible. Thus, again, greedy strategies instruct i to clinch xm, which
contradicts that she is receiving xW (h).

To finish the proof, let ĥ = max{h1, h2, . . . , hM} and let x̂ be a payoff that becomes
impossible at ĥ. Since x̂ is the last payoff in X0 to become impossible, we can conclude that
x̂ becomes impossible at ĥ. Further, the claim shows that no x ∈ X0 is clinchable at any
h′ ⊆ ĥ, and so we can further conclude that x̂ is previously unclinchable at ĥ. Therefore, by
part 3 in the definition of a millipede game, there is some action a ∈ A(ĥ) such that for all
y ∈ Pi((ĥ, a)), y ⊵i xC(h). Since all preferred payoffs are no longer possible at ĥ, we must
have y = xC(h) and greedy strategies direct i to clinch xC(h), which contradicts that she

24Recall that for terminal histories h, we define Ci(h) = {x}, where x is the payoff associated with the
terminal history. Thus, if h′ is a terminal history, then i receives payoff x1, which also contradicts that she
receives payoff xW (h).

25Note that if ĥ−m is a terminal history, the argument still applies, and the outcome associated with this
terminal history must be xm, which contradicts that i gets payoff xW (h).
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receives xW (h).26
∎

Propositions 1 and 2 complete the proof of Theorem 1. ∎

26If ĥ is a terminal history, then we make an argument analogous to footnote 24 to reach the same
contradiction.
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