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Abstract
Random Priority is a popular mechanism used to allocate a set of objects to

a set of agents without the use of monetary transfers. Random Priority is ap-
pealing because it satisfies desirable efficiency (Pareto efficiency), fairness (equal
treatment of equals), and incentive (strategy-proofness) properties. Is it the only
mechanism with these properties? This has been a long-standing open ques-
tion and in this note we answer it by constructing other mechanisms (Correlated
Random Priority mechanisms) satisfying these desirable properties.

1 Introduction
Consider the problem of allocating n indivisible objects to n agents without the use of
monetary transfers. Examples of such problems include assigning school seats to K12
students, dormitory rooms to college students, tasks to workers, offices to professors,
or time slots on a common machine. A classic and oft-used solution to this problem is
the Random Priority (RP) mechanism: an ordering of the agents is drawn uniformly
at random, and agents are called, one-by-one, to select their favorite object from those
that were not selected by earlier agents.1 The popularity of RP largely derives from its
desirable efficiency, fairness, and incentive (or simplicity) properties:

∗First posted draft September 2020. For their comments, we would like to thank Nick Arnosti,
Fedor Sandomirskiy, Omer Tamuz, and Utku Unver.
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1Random Priority also goes by the name Random Serial Dictatorship, see e.g., Abdulkadi̇roğlu and
Sönmez (1998).
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• Pareto efficiency: for any preferences of the agents, the final allocation of RP is
Pareto efficient.

• Equal treatment of equals: if two agents have the same preferences, RP assigns
them the same distribution over outcomes; in other words, RP satisfies.

• Strategy-proofness: irrespective of the reports of others, it is always in an agent’s
best interest to report their preferences over the objects truthfully.

While it is straightforward to show that RP satisfies the above properties, an open
question is whether any other mechanism also satisfies these properties, or whether RP
is the unique mechanism to do so. Many authors attempted to resolve this conjecture.2

We provide a resolution by constructing an alternative strategy-proof, Pareto efficient,
and equal-treatment mechanism that differs from RP.

The construction gives us a large class of mechanisms that we call Correlated Ran-
dom Priority mechanisms. All mechanisms in this class satisfy the above key axioms
but the class offers more flexibility in correlating outcomes of individual agents.

While our construction resolves the above strong version of the conjecture, its weaker
versions might still be true. Weaker versions of the conjecture weaken one of the
assumptions or relax the uniqueness claim. RP fails the stronger efficiency properties of
ex-ante efficiency (Zhou, 1990) and ordinal efficiency (Bogomolnaia and Moulin, 2001).3

RP satisfies stronger fairness property of symmetry (Pycia and Troyan, 2020) as well
as stronger incentive and simplicity properties such as obvious strategy-proofness (Li,
2017), one-step simplicity, and strong obvious strategy-proofness (Pycia and Troyan,
2020). Uniqueness claim can be relaxed to the uniqueness of each agent’s marginal
outcome distribution (as in the positive results of Liu and Pycia 2011).

The sole weak version of the conjecture so far proven is Pycia and Troyan’s (2020)
result that RP is the unique mechanism that is Pareto efficient, symmetric, and ob-
viously strategy-proof. An earlier step towards proving the conjecture was made by
Abdulkadi̇roğlu and Sönmez (1998) and Knuth (1996) who showed that RP is equiva-
lent to another mechanism called the core from random endowments, which works by

2For main analyses that led to results weaker than the above conjecture, see the literature discus-
sion. Pycia and Ünver (2015) discuss methodological tools developed in a failed attempt to prove the
conjecture.

3RP satisfies ordinal efficiency asymptotically as established in Che and Kojima (2010); cf. Liu
and Pycia (2011) for general asymptotic equivalence of Pareto and ordinal efficiency. RP fails ex-ante
efficiency even asymptotically, see Abdulkadi̇roğlu et al. (2009), Featherstone and Niederle (2008), and
Miralles (2008).
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first randomly assigning the objects to the agents and then allowing the agents to trade
according to the top trading cycles (TTC) algorithm of Shapley and Scarf (1974). This
equivalence result has been extended, e.g., by Pathak and Sethuraman (2011), Carroll
(2014), and Pycia (2016).

Earlier work also established an asymptotic version of the conjecture: Liu and Py-
cia (2011) showed that asymptotically, in large markets, all ordinally efficient, equal
treatment, strategy-proof mechanisms with small agents have the same marginal dis-
tributions as RP. The characterizations based on ordinal efficiency cannot however be
extended to finite markets because Bogomolnaia and Moulin (2001) showed that there
is no ordinally efficient, strategy-proof, and ETE mechanism when n ≥ 4.4

2 Model
We consider the problem of allocating n indivisible objects to n agents. We let X
denote the set of objects and I denote the set of agents. Each agent i ∈ I has a
strict preference relation Pi over X, where we write xPiy to denote that x is strictly
preferred to y, and xRiy if either xPiy or x = y. We use P to denote the set of all strict
preference relations over X. We use PI = (Pi)i∈I to denote a profile of preferences,
one for each agent, and Pn to denote the set of all preference profiles. A deterministic
allocation a : I → X is a one-to-one function, where a(i) is the object allocated to
agent i. We let A denote the set of allocations. A random allocation µ : A → [0, 1]

is a probability distribution over A, where
∑

a∈A µ(a) = 1. We let M denote the set of
random allocations.

A mechanism ψ : Pn → M is a mapping from preference profiles of the agents
to random allocations. Given a mechanism ψ, we write ψ(PI)(a) to denote the proba-
bility that allocation a is implemented when the preferences are PI . Let πk

i (ψ(PI)) =∑
a∈A ψ(PI)(a)1{a(i) = xk} be the probability that i receives object xk at the ran-

dom allocation ψ(PI). Finally, we write ψi(PI) = (πk
i (ψ(PI)))

n
k=1 to be i’s lottery over

objects under mechanism ψ at preference profile PI .
We are interested in the following canonical efficiency, fairness, and incentive prop-

erties:

• Efficiency: A deterministic allocation a is Pareto efficient if there is no other
4Cf. also Zhou (1990) who shows that there is no strategyproof, ETE, and ex-ante efficient mecha-

nism for n ≥ 3. Erdil 2014 shows that the equality of the number of agents and objects plays a crucial
role in the conjecture.
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allocation a′ such that a(i)Ria
′(i) for all i ∈ I and a(i)Pia

′(i) for some i ∈ I. A
mechanism ψ is Pareto efficient if, for all PI ∈ Pn, every deterministic allocation
in the support of ψ(PI) is Pareto efficient.

• Fairness: A mechanism ψ satisfies equal treatment of equals (ETE) if for all
PI ∈ Pn, Pi = Pj implies ψi(PI

) = ψj(PI).

• Incentives: A mechanism ψ is strategyproof if ψi(Pi, P−i) first-order stochasti-
cally dominates ψi(P

′
i , P−i) for all Pi, P

′
i ∈ P and all P−i ∈ Pn−1, where first-order

stochastic dominance is defined with respect to i’s true preferences Pi.

We say that two mechanisms ψ and ϕ are equivalent if ψ(PI) = ϕ(PI) for all PI .

The Random Priority (RP) mechanism works as follows. An agent ordering is
drawn uniformly at random from the set of all permutations of I. Agents are then
assigned objects in this order, with each agent receiving her most preferred object
(according to her reported preferences) among the set of objects that have not been
assigned to earlier agents. For any preference profile PI , we define ψRP (PI) as the
lottery over A induced by this procedure. It is well-known that ψRP is strategyproof,
Pareto efficient, and satisfies equal treatment of equals.

3 Result: Beyond Random Priority
We are now ready to prove

Theorem 1. There exists a Pareto efficient, strategyproof, and ETE mechanism ψ that
is not equivalent to Random Priority.

Proof. We prove the theorem using a counterexample with 4 agents, I = {1, 2, 3, 4},
and 4 objects, X = {w, x, y, z}. For shorthand, we write Pi : w, x, y, z to denote that i
strictly prefers w to x to y to z.

Fix a profile of preferences PI , and consider the following algorithm.

• Draw an ordering of the agents uniformly from the set of all permutations of I.
Denote this ordering as σ : σ1, σ2, σ3, σ4.

• If P1 = P2 = w, x, y, z, σ1 = 1, and σ2 = 2, then assign agent 1 to w, agent 2 to
x, agent 3 to her top choice among {y, z} (according to P3), and agent 4 to the
remaining unassigned object.
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• If P1 = P2 = w, x, y, z, σ1 = 2, and σ2 = 1, then assign agent 2 to w, agent 1 to
x, agent 4 to her top choice among {y, z} (according to P4), and agent 3 to the
remaining unassigned object.

• In all other cases, assign agents in the order σ1, σ2, σ3, σ4 to their favorite object
among those that were not selected by earlier agents (the entire set X for agent
σ1).

Define ψ as the mechanism that results from applying the above algorithm to any
preference profile PI . Note that this is very similar to standard Random Priority,
except in two special cases described in the second and third bullet points. In these
specific instances, the third agent to select is not chosen randomly from the remaining
agents.

It is trivial to see that this mechanism is Pareto efficient, as the algorithm always
results in a Pareto efficient deterministic allocation. It is also easy to see that the
mechanism is strategy-proof: agents cannot affect their place in the selection order,
and at their turn, it is optimal to have reported their true preferences.

For equal treatment of equals, note first that it is well-known that RP satisfies ETE.
Further, on any preference profile PI in which either P1 ̸= w, x, y, z or P2 ̸= w, x, y, z,
ψ(PI) produces the same lottery over deterministic allocations as RP (and therefore
immediately satisfies ETE on all such profiles). Thus, consider any PI where P1 =

P2 = w, x, y, z. For all σ such that {σ1, σ2} ̸= {i1, i2}, ψ once again leads to the same
deterministic allocation as the corresponding case under RP.

Thus, there are 4 cases left, σ : 1, 2, 3, 4, σ′ : 1, 2, 4, 3, σ′′ : 2, 1, 3, 4, and σ′′′ : 2, 1, 4, 3.

It is obvious that 1 and 2 receive the same allocations under each of these as under
RP, and so ψ1(PI) and ψ2(PI) are the same as 1 and 2’s lotteries under RP. Finally,
consider agents 3 and 4, and note that since 1 and 2 will take w and x, only the relative
rankings of y and z matter. If P3 and P4 rank y and z differently, then they each
receive their favorite from the set {y, z}, which once again is the same as under RP.
So, consider the case that both P3 and P4 prefer y to z. Note that under both RP and
ψ, 3 receives y and 4 receives z for exactly 2 of {σ, σ′, σ′′, σ′′′}, and the allocation is
reversed for the other 2 selections: under RP, 3 receives y and 4 receives z under σ and
σ′′, and vice-versa under σ′ and σ′′′, while under ψ, 3 receives y and 4 receives z under
σ and σ′, while 4 receives y and 3 receives z under σ′′ and σ′′′. The remaining case
where both 3 and 4 prefer z to y is analogous, and so, summing up, we conclude that
both ψ3(PI) and ψ4(PI) are equivalent to the respective lotteries under RP. Therefore,
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ψ also satisfies ETE.
Finally, we argue that ψ is not equivalent to RP. To see this, consider the preference

profile Pi = w, x, y, z for all i ∈ I, and the following allocation:

a =

(
1 2 3 4

w x z y

)
.

Note that ψ(PI)(a) = 0, while ψRP (PI)(a) > 0. Therefore, the two mechanisms are not
equivalent. ■

The above proof makes it clear that a large class of mechanisms—that we call Cor-
related Random Priority (CRP)—satisfy the three axioms from Theorem 1. In defining
CRP mechanisms we use the auxiliary notions of the top of an ordering, continuation
ordering, and of coupling. We say that a set of agents J is at the top of an ordering if
the ordering ranks agents from J at the top, that is

{
σ1, ..., σ|J |

}
= J . By continuation

ordering we mean the restriction σ{k+1,...,|I|} of an ordering σ to its last |I|−k positions.
We say that a set of k ≥ 2 orderings S = {σ1, ..., σk} of agent is coupled at set of agents
J at preference profile PJ of these agents if (i) J is at the top of all orderings in S,
and (ii) for any two orderings σ, σ′ ∈ S the serial dictatorship ψσ assigning objects in
the order σ and the serial dictatorship ψσ′ assigning objects in the order σ′ lead to the
same objects being assigned to agents from J that is ψσ (PJ) (J) = ψσ′ (PJ) (J).5

Any CRP mechanism is constructed as follows: (1) we start by assigning each order-
ing σ and preference profile PJ of agents at the top of σ probability p (σ;PJ) =

1
|X|! ; (2)

for any preference profile PI , set of agents J ⊊ I, and set of orderings S that is coupled
at J and PJ , we reshuffle probabilities p (·;PJ) of orderings in S so that for any continua-
tion ordering σ∗

{|J |+1,...,|I|}, the sum of probabilities
∑{

σ:σ{|J|+1,...,|I|}=σ∗
{|J|+1,...,|I|}

} p (σ;PJ)

is unchanged by the reshuffle; otherwise the reshuffle is arbitrary. We repeat step (2)
an arbitrary number of times subject to the constraint that after we reshuffled prob-
abilities for some set J and profile PJ , we do not later reshuffle them for any proper
subset J ′ ⊊ J and PJ ′ such that PJ ′ = PJ |J ′ . The CRP mechanism than draws the
first agent uniformly at random and assigns this agent his or her top choice; following
a sequence of such assignments to any agents i1, ..., ik with preferences Pi1,...,ik we then
draw the next agent so that the probability i ̸∈ {i1, ..., ik} being drawn is equal to the
sum of probabilities p

(
σ;P{i1,...,ik}

)
over all orderings with {i1, ..., ik} at the top and

5We simplify the notation and specify only preferences of agents in J as condition (i) guarantees
that the assignments of objects to these agents depend only on their preferences under both ψσ and
ψσ′ .
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agent i in the k + 1 position (σk+1 = i).
We can see that the resulting CRP mechanisms are strategy-proof via two separate

arguments. First, the strategy-proofness obtains because no agent i affects the distri-
bution of the sets of agents drawn before i nor the probability that i is drawn following
any set of agents J . Second, the strategy-proofness obtains because the reshuflings do
not change any agent’s marginal distribution of assigned objects; thus the distribution
is the same as under Random Priority. The second argument also establishes that any
CRP satisfies equal treatment of equals. Finally, the mechanism is Pareto efficient
because each of its ex post assignments is obtained via a serial dictatorship.

Note that while the above proof constructs a mechanism ψ that produces a different
distribution over allocations of objects to all individuals than ψRP , from the perspective
of an individual agent i, the marginal distributions of i’s assignment over individual
objects are the same for both mechanisms. Whether all strategy-proof, Pareto efficient,
and ETE mechanisms are equivalent to RP under a weaker such notion of marginal
equivalence remains an open question.
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